Exercise 5

Solve the differential equation.

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+5 y=e^{2 x}
$$

Solution

This is a linear inhomogeneous ODE, so the general solution can be expressed as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
\frac{d^{2} y_{c}}{d x^{2}}-4 \frac{d y_{c}}{d x}+5 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad \frac{d y_{c}}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y_{c}}{d x^{2}}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
r^{2} e^{r x}-4\left(r e^{r x}\right)+5\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-4 r+5=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{4 \pm \sqrt{16-4(1)(5)}}{2}=\frac{4 \pm \sqrt{-4}}{2}=2 \pm i \\
r=\{2-i, 2+i\}
\end{gathered}
$$

Two solutions to the ODE are $e^{(2-i) x}$ and $e^{(2+i) x}$. According to the principle of superposition, the general solution to equation (1) is a linear combination of these two.

$$
\begin{aligned}
y_{c}(x) & =C_{1} e^{(2-i) x}+C_{2} e^{(2+i) x} \\
& =C_{1} e^{2 x} e^{-i x}+C_{2} e^{2 x} e^{i x} \\
& =e^{2 x}\left(C_{1} e^{-i x}+C_{2} e^{i x}\right) \\
& =e^{2 x}\left[C_{1}(\cos x-i \sin x)+C_{2}(\cos x+i \sin x)\right] \\
& =e^{2 x}\left[\left(C_{1}+C_{2}\right) \cos x+\left(-i C_{1}+i C_{2}\right) \sin x\right] \\
& =e^{2 x}\left(C_{3} \cos x+C_{4} \sin x\right)
\end{aligned}
$$

C_{3} and C_{4} are arbitrary constants. On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
\frac{d^{2} y_{p}}{d x^{2}}-4 \frac{d y_{p}}{d x}+5 y_{p}=e^{2 x} \tag{3}
\end{equation*}
$$

Since the inhomogeneous term is an exponential function, the particular solution is $y_{p}=A e^{2 x}$.

$$
y_{p}=A e^{2 x} \quad \rightarrow \quad \frac{d y_{p}}{d x}=2 A e^{2 x} \quad \rightarrow \quad \frac{d^{2} y_{p}}{d x^{2}}=4 A e^{2 x}
$$

Substitute these formulas into equation (3).

$$
\begin{gathered}
\left(4 A e^{2 x}\right)-4\left(2 A e^{2 x}\right)+5\left(A e^{2 x}\right)=e^{2 x} \\
A e^{2 x}=e^{2 x}
\end{gathered}
$$

Match the coefficients to get an equation involving A.

$$
A=1
$$

The particular solution is then

$$
y_{p}=e^{2 x} .
$$

Therefore, the general solution to the original ODE is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =e^{2 x}\left(C_{3} \cos x+C_{4} \sin x\right)+e^{2 x} .
\end{aligned}
$$

